The GPU-based Parallel Ant Colony System
نویسنده
چکیده
The Ant Colony System (ACS) is, next to Ant Colony Optimization (ACO) and the MAX-MIN Ant System (MMAS), one of the most efficient metaheuristic algorithms inspired by the behavior of ants. In this article we present three novel parallel versions of the ACS for the graphics processing units (GPUs). To the best of our knowledge, this is the first such work on the ACS which shares many key elements of the ACO and the MMAS, but differences in the process of building solutions and updating the pheromone trails make obtaining an efficient parallel version for the GPUs a difficult task. The proposed parallel versions of the ACS differ mainly in their implementations of the pheromone memory. The first two use the standard pheromone matrix, and the third uses a novel selective pheromone memory. Computational experiments conducted on several Travelling Salesman Problem (TSP) instances of sizes ranging from 198 to 2392 cities showed that the parallel ACS on Nvidia Kepler GK104 GPU (1536 CUDA cores) is able to obtain a speedup up to 24.29x vs the sequential ACS running on a single core of Intel Xeon E5-2670 CPU. The parallel ACS with the selective pheromone memory achieved speedups up to 16.85x, but in most cases the obtained solutions were of significantly better quality than for the sequential ACS.
منابع مشابه
Parallel Implementation of Travelling Salesman Problem using Ant Colony Optimization
In this paper we have proposed parallel implementation of Ant colony optimization Ant System algorithm on GPU using OpenCL. We have done comparison on different parameters of the ACO which directly or indirectly affect the result. Parallel comparison of speedup between CPU and GPU implementation is done with a speed up of 3.11x in CPU and 7.21x in GPU. The control parameters α, β, ρ is done wit...
متن کاملParallel Implementation of the Max_Min Ant System for the Travelling Salesman Problem on GPU
In this paper, we have proposed an approach to implement Ant colony optimization algorithm especially Max-Min Ant System for solving Travelling Salesman problem on GPU. GPUs are specially designed microprocessor for graphical operation and can be used for general purpose operations. ACO is a nature based inspired algorithm based on heuristics to find the solution for combinatorial optimization ...
متن کاملParallel Ant Colony Optimization on Graphics Processing Units
The purpose of this paper is to propose effective parallelization strategies for the Ant Colony Optimization (ACO) metaheuristic on Graphics Processing Units (GPUs). The Max–Min Ant System (MMAS) algorithm augmented with 3-opt local search is used as a framework for the implementation of the parallel ants and multiple ant colonies general parallelization approaches. The four resulting GPU algor...
متن کاملTabu Search with two approaches to parallel flowshop evaluation on CUDA platform
The introduction of NVidia’s powerful Tesla GPU hardware and Compute Unified Device Architecture (CUDA) platform enable many-core parallel programming. As a result, existing algorithms implemented on a GPU can run many times faster than on modern CPUs. Relatively little research has been done so far on GPU implementations of discrete optimisation algorithms. In this paper, two approaches to par...
متن کاملGeneric techniques in general purpose GPU programming with applications to ant colony and image processing algorithms
In 2006 NVIDIA introduced a new unified GPU architecture facilitating generalpurpose computation on the GPU. The following year NVIDIA introduced CUDA, a parallel programming architecture for developing general purpose applications for direct execution on the new unified GPU. CUDA exposes the GPU’s massively parallel architecture of the GPU so that parallel code can be written to execute much f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Parallel Distrib. Comput.
دوره 98 شماره
صفحات -
تاریخ انتشار 2016